Voici la suite du dossier sur les trous noirs ! Si vous avez raté le premier épisode, vous pouvez vous rattraper par ici ! Comme souvent, les mots sont un peu trompeurs et il est important de souligner qu’un trou noir n’est pas... un trou ! En résumé, un trou noir est une énorme quantité de matière concentrée en un tout petit volume, appelée singularité. Cette matière forme un creux très profond dans l’espace-temps, de telle sorte que si un photon franchit ce qu’on appelle l’horizon du trou noir, il ne pourra plus en sortir. Cet horizon n’est pas une frontière physique. Si lors d’un voyage (un tantinet imprudent) dans l’espace, vous le franchissiez, vous ne remarqueriez rien. Seulement, une fois à l’intérieur, il vous serait impossible de transmettre un message d’adieu à votre collègue resté prudemment à distance (pas fou le collègue). Et même avec le vaisseau spatial le plus puissant qui soit, vous ne pourriez plus sortir du trou noir... Nous connaissons maintenant le principe général du trou noir, mais tous les trous noirs ne se valent pas : certains sont microscopiques tandis que d’autres sont des monstres galactiques. Pour s’y retrouver, les astrophysiciens les ont classé en trois familles. Des trous noirs microscopiques qui s'évaporent Par ordre de masse, nous trouvons d’abord les microtrous noirs. Ils sont aussi appelés primordiaux, car on pense qu’ils se sont formés il y a environ 13 milliards d’années alors que l’univers était bien plus dense et chaud qu’aujourd’hui. Le physicien Stephen Hawking a proposé que ces trous noirs puissent s’évaporer et même disparaître. Les plus gros microtrous noirs pourraient être encore aujourd’hui en train de s’évaporer, mais leur petite taille et leur faible interaction avec leur environnement font qu’aucun n’a été encore détecté à ce jour. Les trous noirs stellaires : cadavres d'étoiles La deuxième catégorie regroupe les trous noirs stellaires. Ces trous noirs sont en réalité des cadavres d’étoiles massives (plusieurs fois la masse du Soleil au moment de leur mort). Toutes les étoiles passent leur vie à lutter contre la gravité, qui tend à les écraser sur elles-mêmes. Vous-mêmes, vous subissez votre propre force de gravité (personne n'est gros hein, c'est pareil pour tout le monde). A votre échelle, vous ne vous en rendez pas compte. Si vous êtes une étoile, c'est pas la même, vous vous en doutez. Heureusement, les étoiles disposent de plusieurs moyens de lutter contre cette mort certaine, et leur première technique s'appelle la fusion nucléaire. Les étoiles sont composées en majorité d’hydrogène, qui est l’atome le plus simple : un proton accompagné d’un électron. Dans les conditions qui règnent à l’intérieur d’une étoile, la matière est sous forme de plasma, c’est-à-dire sous forme de soupe dans laquelle flottent indépendamment protons et électrons. Le feu, par exemple, est un plasma. En temps normal, pas moyen de coller un proton à l'autre. Une force colossale les tient à bonne distance les uns des autres. Mais, la densité et la température sont tellement élevées dans les étoiles pour que les protons sont capables de fusionner, ce qui libère une grande quantité d’énergie sous forme de photons (de la lumière !). Cette forte émission de lumière permet alors de contrebalancer la gravité pendant un certain temps. Mais lorsque les réserves d’hydrogène et d’autres éléments s’épuisent, c'est foutu, la gravité va écraser l’étoile sur elle-même, jusqu’à ce que sa taille soit comparable à celle de la Terre. A ce moment-là, la matière est si dense que les électrons se retrouvent serrés les uns contre les autres. Or les électrons, comme les protons, détestent être les uns sur les autres, ils vont alors s’agiter en tous sens pour éviter cette situation. Cela crée ce qu’on appelle une pression de dégénérescence, qui est capable de contrebalancer la gravité. Si l’étoile a une masse inférieure à 1,4 fois la masse du Soleil, son évolution s’arrêtera là et elle sera appelée naine blanche. C’est le destin qui attend notre Soleil dans 4 à 5 milliards d’années (voire un petit peu plus selon les dernières estimations). Il se refroidira alors extrêmement lentement, jusqu’à devenir une naine noire, n’émettant quasiment plus de lumière. Par contre, si la masse de l’étoile est plus importante que 1,4 fois la masse du Soleil, l’agitation des électrons ne suffira pas à contrebalancer la gravité et l’étoile s’effondrera de nouveau, jusqu’à ce que son rayon atteigne seulement quelques dizaines de kilomètres. La densité est alors telle que les neutrons, qui sont les autres particules composant les noyaux avec les protons, sont alors à leur tour pris d’agitation et arrêtent l’effondrement. L’étoile est alors appelée étoile à neutrons. Il existe des étoiles de plusieurs dizaines, voire de plusieurs centaines de masses solaires. Pour celles-ci, rien ne peut arrêter leur énorme force de gravité. Elles passent très rapidement par les stades de naine blanche et d’étoile à neutrons. La gravitation devient alors tellement forte que la lumière émise par l’étoile ne peut plus s’échapper. Si l’on pouvait observer une de ces étoiles massives à ce moment-là, on verrait l’horizon du trou noir apparaître en son centre et grossir jusqu’à englober toute l’étoile. Celle-ci disparaîtrait alors de notre vue pour toujours. Des monstres affamés au centre des galaxies Pour terminer notre promenade au bestiaire des trous noirs, passons enfin aux plus grands monstres de l’univers : les trous noirs galactiques. Avec leur masse variant de plusieurs millions à plusieurs milliards de masses solaires, ils sont tapis au centre de presque toutes les grosses galaxies. Le déroulement de leur naissance et de leur croissance n’est pas encore parfaitement connu. Dans un premier scénario, les premiers trous noirs de l’histoire de l’univers étaient plus massifs qu’aujourd’hui et en ont ensuite mangé d’autres. Une autre hypothèse envisagée est l’effondrement d’énormes nuages de gaz et de poussière qui formeraient alors directement les trous noirs galactiques. Le plus connu des trous noirs galactiques est celui qui se trouve au centre de notre galaxie, la Voie Lactée, et qu’on appelle Sagittarius A* (abrégé par SgrA*) car il est situé dans la constellation du sagittaire. Sa masse a beau être égale à quatre milliards de fois la masse du Soleil, les astrophysiciens n’ont eu les premiers indices de son existence qu’en 1979 et leurs premières certitudes datent seulement de la fin des années 90. Il faut dire pour leur défense que SgrA* est situé à 26 000 années-lumière de nous. L’observer, c’est comme essayer de voir un cheveu à 380 km de distance ! Comment observer un trou noir ? Heureusement il existe de nombreux moyens indirects pour observer un trou noir. En regardant les étoiles tourner autour de SgrA*, les astrophysiciens ont pu par exemple déterminer sa masse. Ils peuvent également observer la lumière émise par les trous noirs lorsqu’ils dévorent de la matière. D’autre part, avec leur forte gravité, les trous noirs se trahissent en déviant et en déformant la lumière qui passe près d’eux. Les étoiles derrière eux peuvent alors apparaître dupliquées ou leur lumière amplifiée. Un autre moyen d’obtenir des informations sur les trous noirs est de regarder comment ils déforment l’espace-temps autour d’eux. Quand par exemple deux trous noirs tournent l'un autour de l'autre, ils génèrent des ondes gravitationnelles, c'est-à-dire des sortes de vagues qui se propagent et déforment sur leur passage à la fois l'espace et le temps (Lire ici l'article sur leur première détection). Sur l'image ci-dessous, vous pouvez voir une simulation d'un trou noir en train de manger un nuage de gaz qui passe ! Les premières images directes de SgrA* devraient être obtenues dans les prochaines années, grâce au développement des radiotélescopes (observant les ondes radio) en réseau, comme ALMA (Atacama Large Millimeter Array). Le monstre nous laissera pour la première fois entrevoir sa silhouette, entourée de lumière, et ouvrira une nouvelle ère dans l’étude des trous noirs en permettant aux physiciens de tester la relativité d’Einstein dans des conditions extrêmes. Si vous voulez savoir à quoi ressemblerait un voyage près d'un trou noir, le meilleur moyen reste encore de regarder le film Interstellar ! Les simulations du trou noir sont en effet basées sur de vraies équations (voir l'article pour plus de détails ici). Envie de plus de trous noirs ? Consultez les dates de mes prochaines conférences ci-dessous ou bien demandez-moi carrément de venir en donner une par chez vous !
0 Commentaires
Votre commentaire sera affiché après son approbation.
Laisser un réponse. |
Qui écrit ?
Sarah Fechtenbaum Docteure en astrophysique et médiatrice en sciences Catégories
Tous
Archives
Janvier 2024
Retrouvez mon dossier Trous noirs dans la revue l'Eléphant
Mon blog dans la sélection des meilleurs blogues de sciences en français 2013 !
Les sites que j'aime
Futurasciences Astronomes Images de la NASA Tu mourras moins bête Science Daily Daily Galaxy Piqûre de Curiosité |